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1 Introduction 
This interim report describes progress to-date on the development of an LDC-customized version 

of SRI's ATSE software. The principal goal of the customization project is to improve the ATSE 

system's accuracy with respect to prompt-blind scoring of student responses to LDC writing 

prompts. This report marks the third main milestone of a planned year-long project, associated 

with the completion of Subtask 1.4 “SCALE Rubric Features.” The project plan schedules this 

milestone for the ninth month of the project. The project is about one month behind schedule. 

The goal of Subtask 1.4 is to improve ATSE by implementing system optimizations 

relevant specifically to LDC’s use of the SCALE rubric. We anticipated that some feature 

extractors not yet implemented in ATSE would be identified as good candidates for obtaining 

this improvement. We estimated that we could garner a 5-10% relative improvement in scoring 

accuracy through execution of this task. 

The following sections document our most recent work: “Progress summary,” ”February 

2017 Scoring Dataset Analysis,” and” SCALE Rubric.” The remainder of the report includes 

content from previous interim reports that has been copied here for ease of reference. Also, an 

attached spreadsheet supplement contains further details on quantitative evaluations. 

2 Progress summary 
One of our most significant accomplishments in this period was the successful integration of the 

recently collected hand-scored dataset (which we refer to as the “February 2017” dataset) into 

our analysis pipeline. After having formatted and validated the data, and after writing the 

software necessary to convert the data into ATSE format, we are now exclusively working with a 

much larger combined dataset for ATSE model training purposes. This has expanded our training 

set from 7 prompts to 18, and from about 850 responses to 2600. Initial results show that the 

addition of the February 2017 data improved the system scoring accuracy (on average by 

trait) by 3.0%, taking the average accuracy by trait from 70.6% to 72.6% (relative to human 

scoring, and using the same version of ATSE that was used to generate results for the previous 

report). Unfortunately, this increase is not as significant as expected, and all signs point to poor 

inter-rater reliability as the main culprit in this less-than-expected improvement. (The average 

inter-rater reliability for the October 2016 data was .628, while it was .487 for the February 2017 

data.) Nonetheless, the fact that no work has yet been done to remove unreliable training data 
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suggests there is room for leveraging this dataset to improve results even further. We have also 

yet to complete this experiment using our most recent version of ATSE. 

The other main accomplishment achieved in this period was the successful 

implementation of new SCALE rubric features. Our experiments have shown that inclusion of 

these new features improved the system scoring accuracy by between 7.9 and 10.2%, 

depending on the trait being scored. In particular, we focused our efforts on exploring the 

relationship between grade level and rubric specification. We executed a differential scoring 

experiment to examine whether an across-grade-band model would perform better than a within-

grade-band model and found that including grade level as an additional feature in an across-band 

model was the most powerful way of including that information into the system. The 

improvement had a significant impact, and as a result, ATSE is now achieving, on average 

across traits, an accuracy level of 79.3% of human inter-rater scoring accuracy. 

Discussion of next steps 

Our main goal for this project is to achieve 90% human-relative scoring accuracy for prompt-

blind scoring. With about two months remaining in the project, we propose that in order to 

achieve this goal, further effort ought to focus on feature additions and refinements of the scoring 

model, rather than on the currently planned Subtask 1.6 “Construct relevance.” While this latter 

task is a necessary stepping stone toward producing inline feedback, which is a long term LDC 

goal, it is likely that this effort may actually reduce ATSE performance, since it will be focused 

on pruning out system features that are shown to be construct irrelevant. 

We recommend exploring data selection as an alternative method of system feature 

improvement that could yield a more significant impact on achieving project objectives. That is, 

given the persistent difficulty of obtaining reliable human scoring (which is likely to persist 

beyond the life of this project), we recommend focusing effort on implementing automatic 

processes that can selectively remove (or weight) human scoring information, and perhaps even 

use individual scores to the system’s advantage (as opposed to using consensus or average 

scores). In this way, the system would be able to better use available information coming from 

human scored datasets. SRI is interested in hearing LDC’s feedback concerning these 

recommendations. 
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3 February 2017 Scoring Dataset Analysis 
We conducted a study of the inter-rater reliability of the Feb 2017 dataset and compared results 

with those from the Summer 2016 data. The results are provided in the Supplement A 

spreadsheet under the “INTER-RATER BY PROMPT & TRAIT” and “INTER-RATER BY 

RATER” sheets. The first sheet shows inter-rater reliability scores by prompt and trait. The 

second sheet shows reliability by individual scorer. A table showing average agreement across 

traits for each prompt is reproduced here as Table 1. 

Table 1. Inter-rater agreement by prompt. 

PROMPT QKAPPA 
ldcfeb2017_ms_social_studies_task_2_causes_of_american_revolution 0.289 
ldcfeb2017_hs_social_studies_task_1_andrew_carnegie 0.375 
ldcfeb2017_hs_science_task_1_nuclear_power 0.410 
ldcoct2016_period_is_pissed 0.439 
ldcfeb2017_hs_ela_task_2_ex_machina 0.464 
ldcfeb2017_hs_social_studies_task_2_were_immigrants_welcome_ 0.493 
ldcfeb2017_ms_science_task_1_fracking 0.502 
ldcoct2016_nuclear_power 0.503 
ldcfeb2017_ms_ela_task_2_dream_within_a_dream 0.505 
ldcfeb2017_hs_science_task_2_bpa 0.515 
ldcfeb2017_ms_social_studies_task_1_jamestown 0.527 
ldcoct2016_water_in_colorado 0.594 
ldcfeb2017_hs_ela_task_1_words_matter 0.627 
ldcfeb2017_ms_ela_task_1_growing_up_is_hard_to_do 0.657 
ldcoct2016_un_education 0.662 
ldcoct2016_no_guitar_blues 0.681 
ldcoct2016_cold_war_red_scare 0.751 
ldcoct2016_fracking 0.765 

Average 0.542 
 

Overall, inter-rater reliability with the new dataset was lower than with the previous 

dataset. Some prompts had particularly low values (notably MS SS Task 2 and HS SS Task 1, 

both of which were on average below 0.4 quadratic weighted kappa). Citation of evidence was 

the most reliable trait in both datasets, with Conventions being the least reliable in both datasets. 

Additionally, 8 out of 47 individual scorers (17%) had average agreement scores below 0.4.  
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4 SCALE Rubric 
We also conducted a study exploring the role of grade level and differential application of the 

SCALE rubric. We had noted that the rubric is differentially applied across grade bands. Even 

more importantly, we noted that anchor papers across grade bands were markedly different. We 

therefore hypothesized that the rubric was being applied in rather different ways across the grade 

bands. However, as was noted by Nicole Renner, the intention is for the rubric to function on a 

continuum across grades, with differences in application mainly designed to capture growing 

complexity in students’ application of the writing skill. We therefore hypothesized that scores 

across grade bands are most likely best treated within a single model, and that grade level should 

be incorporated as a feature. 

 We implemented this idea by adding a set of ATSE input features that can be derived 

from LDC prompt meta-information. Fortunately, adding these features allowed us to obtain 

significant improvements in system accuracy. On average across traits, the system improved 

9.1% in comparison to not using the features. Table 2 below summarizes the results. More 

details, including results by trait, are included in the Supplement A spreadsheet under the “FEB 

2017 RESULTS” sheet. 

Table 2.  ATSE system improvements due to Subtask 1.4 (SCALE rubric) features and addition of new 
data. 

JAN 2017 SYSTEM (ALL DATA) 0.394 
JAN 2017 SYSTEM (2016 OCT DATA ONLY) 0.427 
JAN 2017 SYSTEM RELATIVE (ALL DATA) 0.726 
JAN 2017 SYSTEM RELATIVE (2016 OCT DATA ONLY) 0.706 
2017 FEB DATA ADDITION RELATIVE IMPROVEMENT 3.0% 
APR 2017 SYSTEM (ALL DATA) 0.429 
APR 2017 SYSTEM RELATIVE (ALL DATA) 0.793 
SUBTASK 1.4 ADDITION RELATIVE IMPROVEMENT 9.1% 

 
With much of our time spent working to incorporate the new scoring data and analyzing 

inter-rater reliability issues, there are still some SCALE-specific features that could be 

implemented if time allows in the remaining portion of the project. For example, it is clear that 

the system, as well as humans, do not have a solid understanding of the “Conventions” trait. 

With some additional discussion of what this means in the context of various subject areas, and a 
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subsequent implementation of some corresponding features, ATSE might even garner an 

increase of more than 9%. 

5 Summer Scoring Dataset Analysis 
This section documents the Summer Scoring dataset and the conclusions we have drawn from 

using it in our first baseline evaluation. It is an updated and extended version of a preliminary 

report prepared in August 2016 with the help of Fannie Tseng of Preva Group. 

5.1 Dataset collection and manual scoring 

The Summer Scoring dataset is comprised of a convenience sample of student responses to LDC 

prompts in middle and high school ELA, Science and Social Studies, collected from numerous 

schools in the state of Colorado. The responses were manually scored by trained scorers, who 

were teachers recruited from Denver metropolitan area schools. The teachers were trained on the 

LDC rubric by expert facilitators from SCALE and public school districts in the Denver area. 

Scorers were trained using a hands-on calibration process designed by SCALE, in which: 

• Teachers individually score sample papers; 

• Teachers assemble in subject-specific groups for discussion about the scores, moderated 

by the subject-specific facilitator; 

• The group tries to reach agreement in their scoring among the group and to scores 

recorded by the subject-area facilitator (called master scores). 

This process is repeated multiple times, until individual scores are calibrated (i.e. in agreement). 

In addition, once the scoring session begins, the facilitators use “check papers” – papers that are 

scored by all the scorers in a subject area group, to continually monitor scores and make sure that 

they are calibrated. 

5.2 Manual scoring descriptive statistics 

The dataset collected for this study consisted of responses to seven (7) different prompts, with 

different sets of students responding to each prompt. The responses were then manually scored, 

with an average of 119 scored responses per prompt. Table 3 provides summary information 

about the number of scored responses for each of six grade-level – subject area pairings. 
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Grade	Level-
Subject

#	of	
Prompts

#	of	Responses	
Scored	per	
Prompt

#	of	Responses	
with	Multiple	
Scores

%	of	Responses	
with	Multiple	
Scores

HS-ELA 1 152 36 24%
HS-Science 1 136 41 30%
HS-Social	Science 1 60 60 100%
MS-ELA 1 105 10 10%
MS-Science 2 132 32 24%
MS-Social	Science 1 116 69 59%  

Table 3. Summary statistics for the Summer Scoring dataset 

5.3 Dataset preparation and pre-processing 

Student response data was provided to SRI using Microsoft Word format. We note that the 

documents often have minor issues associated with formatting, as in Figure 1, which is a screen 

shot of an example submission in Word format. Note the unusual elision of some words when 

occurring after the word "I". Some of these formatting issues may originate with the original 

providers of the documents. Others we determined were due to the hand-copying of word 

documents during LDC's data preparation and anonymization process.  

It is recommended that in future rounds of data collection, any manual transformation of 

data be avoided if possible. Instead, collecting input directly from students via a consistent 

digital interface is recommended. (See discussion of the Tao assessment platform in Section 10 

below.) Note that ATSE requires plaintext input, and we apply text extraction scripts to convert 

the Microsoft Word documents to ASCII plaintext. 
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Figure 1. An example of a formatting error in a paragraph from one of the Microsoft Word documents 

 

Scoring information was provided to SRI in the form of tab-separated-value (TSV) files. 

There were no issues in pre-processing these files as they conformed to the required formats 

documented in the ATSE manual, which was provided to LDC data in advance. 

5.4 Inter-rater reliability 

The inter-rater reliability of the Summer Scoring dataset is shown in Figure 2. Each data point 

characterizes the reliability for a particular prompt-trait combination. Approximately half of the 

scoring sets would be considered at least a "good" level of agreement, while the other half are 

characterized as "moderate" or perhaps "poor" in some cases. 
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Figure 2. Inter-rater reliability statistics (as quadratic-weighted kappa) for the Summer Scoring dataset 

 

We have run several experiments in the past in which it has been demonstrated that the 

inter-rater reliability of a scoring training set has a significant impact on the accuracy of the 

automated scoring model that is learned from that dataset. Therefore, it is recommended that 

some additional effort be put into future manual scoring sessions to increase the inter-rater 

reliability of LDC manual scoring. Higher agreement is typically achieved through close 

discussion of anchor papers with expert writing evaluation trainers. 

5.5 Discussion for subsequent rounds of dataset collection 

After our experience with the Summer Scoring datasets, some lessons were learned about 

improving subsequent rounds of data collection. This section collects, for the purpose of 
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archiving our thoughts, some informal comments that were made during discussions between 

SRI and LDC. 
 

Variable Example values 

Writing type argumentative, informational, narrative, etc. 

Grade level 6-8. 9-12, etc. 

Subject area science, social science, ELA, etc. 

Topic [indefinite number of topics] 

 

There are four key variables that are important to consider when seeking to obtain an ideal 

training set for prompt-blind scoring: writing type, grade level, subject area, and topic (prompt). 

The writing type and grade level variables are the most essential dimensions, because any time 

they change, the rubric for the core 5 traits changes. It is most important to get a good distribution 

across all combinations of these two variables. At an absolute minimum, we want at least 1 example in 

each cell of that 2 x 2 matrix (note that we didn't do any Grade 9-12 informational essays this summer.) 

As for Variable 3 / subject area, my suggestion is that we try to get one of each of the subject 

areas in each cell of the 2x2 (Var1 by Var2) matrix. I realize that would result in 2 x 2 x 3 = 12 total 

prompts, which may be beyond what you are able to resource. So I guess we can call that "optimal"? 

Lastly, if each of those 12 prompts covered a different topic, then I think we would be in a pretty 

good position on the topic variable, since the only goal there is just to get a wide variety of topics across 

the entire set. 

I always feel confident saying "the greater the variety of prompts, the better we will do with the 

prompt-blind automated scoring" so long as the scoring is of a high quality. Therefore, I do think that 

having more than one prompt in each of the grade X style X subject cells would likely be a benefit. 

However, there are important caveats to consider in addition to the cost of additional scoring: 

(1) There is a decreasing benefit to each additional prompt and/or data point (i.e., there are 

diminishing returns). I feel confident that we have never bumped up hard against a plateau in our 

previous experiments, where we've had no more than ~3000 total responses. I've suggested 2400 as a 

kind of "sweet spot" because (a) we are *still on a significant upward slope* at that point, meaning that 

none of the data collection effort will be in vain, and (2) we expect to be at an *acceptable* level of 

accuracy at that point as well. I estimate that collecting data beyond this sweet spot will probably 

increase our performance modestly, and is probably a requirement if we want to go from *acceptable* to 

*human level* accuracy. However, data for a 13th prompt is certainly not going to benefit us as much as 

the first 12 do. 
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(2) We prefer to collect at least some minimum amount of each prompt (~150) because (a) this 

improves the efficiency and consistency of the human scoring, which greatly influences the usefulness of 

the data and (2) so we can measure performance by-prompt in order to identify and correct for 

idiosyncrasies related to prompts. (Also because we put in some effort per prompt to gather up the 

background data.) 

 

6 Modeling Additions 
In this section we describe our progress toward enhancing the ATSE machine learning modeling 

system for the purpose of improving our ability to produce a highly customized prompt-blind 

LDC scoring model. We begin with a technical description of our newly developed machine 

learning workflow framework. We follow this with a summary of other related accomplishments 

in the area of modeling additions and improvements. 

6.1 The workflow engine 

The original incarnation of ATSE was an implementation in R of a model development 

architecture that applied multiple learners to multiple features extracted from multiple data 

inputs, and collected together the outputs of these learners into an ensemble of higher level 

features which were then fed to a suite of higher level learners. Recognizing the many ways to 

extract features, select learners, and combine outputs, we have re-architected the processing 

engine behind ATSE to enable a more flexible framework for training of models and scoring of 

new data sets. Our new workflow engine automates much of the human effort underlying the 

model development process. We are motivated to make the investment now, so that going 

forward we can accelerate a development process that is easy to configure, modify and extend. 

The framework emphasizes re-use of processing modules, data products, and models. Its 

design simplifies the tasks of 

• reconfiguring the flow of data 

• adding new learners and processing steps 

• iteration over parameters 

• selecting the best model from a suite of competitors 

• regenerating data 
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and automates their execution. 

6.1.1 What is a workflow? 

A workflow describes the movement of data through a processing pipeline, whether during 

model development, model evaluation, or scoring of new data. This flow can be represented as a 

directed graph. Nodes (graph vertices) represent transformations of data. Nodes are connected by 

any number of arcs (graph edges) that specify the flow of data in the form of inputs and outputs.  

In our formulation, data is viewed abstractly as any information that can be stored in a 

file. This includes not only the traditional rectangular array of variables of arbitrary type, but 

also: files of unstructured data; associative arrays that map keys to values; and lists of 

parameters. Completed models that have been serialized for re-use can also be viewed as data.  

Broadly speaking, a node represents any transformation that creates output data from 

input data. There is no minimum complexity for the processing encapsulated in the node. A node 

can be tasked with: 

• generating features 

• combining ('reducing') multiple data objects into one 

• applying a previously developed model 

• executing an external process 

• selecting the optimum from a set of candidates 

A workflow itself can be viewed as a node, and therefore can be embedded and invoked 

as a component in a larger workflow graph. This concept enables us to develop a library of 

processing pipelines and finished models that can be connected and reused in arbitrary ways. 

Rather than repeatedly re-implement the same logic for a particular data processing task, we 

define a standard workflow for that task, and store it in the library, for deployment as needed. 

6.1.2 Specifying the workflow 

We have devised a language to concisely specify a workflow and its processing steps using a 

graph-theoretic idiom. Processing nodes are defined with input and output ports for ingesting and 

emitting data. Arcs are defined to connect output ports to input ports. The ports themselves 

specify the name and type of the data. 
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Our framework flexibly handles not only scalar types (representing a single data type 

such as matrix or string) but also hash types. A data object with hash type is an associative array 

of items of the same scalar type, indexed by a set of keys. Processing steps that produce data 

products of hash type include: 

• randomly splitting a set of records into folds; here the key is the fold index 

• "exploding" text data into a tally of terms; the key is the term itself.  

• scoring the same data set through a variety of models; the key is the model 

In anticipation of the need to handle such data, our workflow language permits an arc to connect 

a hash output type to a scalar input type; this will be understood as an implicit request for the 

receiving node to iterate over the parameters. With this convention it is a simple matter to direct 

a workflow to carry out parameter sweeps, or perform cross-validation, or replicate the same 

action over multiple data sets. Our workflow engine can carry out this directive even if the 

number of parameters is not known in advance, e.g., if the number of keys generated by a node 

varies with the input supplied to the node. 

6.1.3 Executing the workflow 

Operationally, the workflow engine assembles the components of the workflow specification into 

a directed graph. Given a specification, the engine validates the internal consistency of the 

specification, constructs a representation of the workflow graph in memory, and determines the 

proper order of node execution demanded by the dependency on upstream data. As soon the 

required input data for a node becomes available, the node is placed into a processing queue, on 

which a team of workers (node executors) can operate in parallel. The interchange of data 

between the governing workflow engine and a node executor is handled via a simple API. 

Each data object generated during workflow execution is written to disk and is registered 

in a master data base. We attach a checksum to each data set, which encodes its size and 

provenance. With this checksum we can automatically determine which data sets require re-

calculation as a result of a modification to a workflow; and only those pieces downstream of the 

altered section of the workflow need to be regenerated. 

The clean separation between a workflow and its execution facilitates the cycle of 

workflow modification and evaluation. We will maintain a repository of processing nodes, 

including entire workflows, along with the serialized models that they produce, for reuse as 
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components of more complex workflows. Workflows can be quickly assembled for both model 

development and scoring of new data. 

Since the specification of a workflow is distinct from its execution, we are free to code 

the workflow engine in any language. Moreover, since the engine hands off the processing of 

each individual node to the node executor, the data transformation encapsulated in a node is 

hidden from the engine and can be implemented in any way. Individual nodes may be executed 

as calls to R routines, or implemented in Java, or executed by the operating system. As for the 

workflow engine itself, we avoid coding in the R language, which is too high level for an 

efficient production implementation. At this point we have coded a working prototype of the 

workflow engine in Python, and are in the process of porting this to Java. 

We expect the workflow engine will greatly simplify the process of design and evaluation 

of competing model architectures and scoring of new data. It will permit us to accelerate the 

cycle of continuous experimentation and model optimization over a much larger universe of 

learners and hyper-parameters. 

6.2 Model type additions 

In parallel to development of the new workflow framework just described, we have also pursued 

the task of identifying and integrating specific candidate modeling approaches (model types) into 

our current ATSE system. One of our earlier achievements in this respect was an investigation 

and integration of the xgboost library. Having studied many machine learning discussion forums 

online, this approach seemed to be an excellent candidate, typically producing very accurate and 

generalizable models, and allowing data scientists to win many machine learning competitions. 

We completed a small exploratory experiment in which xgboost's performance was compared to 

our existing system, and the results were very positive. These results are documented in Section 

9 below. 

Subsequent to this experiment we discovered the 'caret' package as an important 

opportunity for rapid expansion of the set of first layer regression models in our model ensemble. 

Caret1 is a set of functions that attempt to streamline the process for creating predictive models. 

The key benefit to ATSE improvement that caret provides is a uniform interface to more than 

                                                
1 'Caret' (short for "Classification And REgression Training"); http://topepo.github.io/caret/ 
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230 model types, which allows us to incorporate entirely new model types with very little effort. 

Since identifying this package, we have been able to do exploratory experiments similar to our 

xgboost study, this time investigating many more model types on our essay scoring prediction 

problem.  It is also clear that the Caret interface fits elegantly into the workflow framework we 

have developed. Caret effectively turns "model type" into a tunable hyper-parameter that can be 

manipulated simply as a workflow variable. 

While this is likely to be a great benefit to the accuracy of our prediction models, the 

opportunity significantly increases the risk of model overfitting. The more rapidly we can deploy 

and train models, the more likely we are to come across a good one by chance, which is likely to 

prove ineffective when generalizing to previously unseen data. We have therefore developed a 

more rigorous validation practice to control for this that hinges on the use of non-LDC datasets 

for the purpose of monitoring generalization and controlling overfitting. The method is described 

in detail below in the "Method" section of our quantitative evaluation in Section 9. 

7 Prompt-blind Features 
In this section we describe our progress toward implementing ATSE features that are specifically 

targeted to the LDC prompt-blind use case. In general, coding such features requires that the 

prompt itself, and any supporting material related to it, be studied by the machine so that the 

student response can be characterized in relation to that material. Subsequently, text analytic and 

natural language processing algorithms can be formulated to encode that characterization 

numerically. 

7.1 Module data extraction 

To develop methods for characterizing a response's relation to a prompt, it is obviously necessary 

to obtain thematic information about the prompt, and the teaching module the prompt is 

associated with. Fortunately, the LDC CoreTools infrastructure makes obtaining this information 

rather convenient, assuming programmatic access to that infrastructure. Simply by surveying the 

metadata and other materials associated with a module, one can find a significant amount of 

thematically related background material. For the LDC CoreTools system, this is typically 
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contained in the "Overview - Description," "Texts," and "Background for Students" section of 

the module, as well as Mini-Task handouts and resources. 

Thus far, we have not been provided the programmatic access to LDC CoreTools that 

would be necessary to fully automate the process of extracting module data. However, this is not 

necessary currently since we are only investigating seven prompts and can perform the task 

manually. Indeed, that is our primary achievement to date. We have obtained access to the LDC 

CoreTools web site and manually downloaded all available thematically-relevant module 

background information. In many cases, this involves links to public resources outside the LDC 

Web site. 

The procedure by which links to module resources were obtained started with the use of 

LDC CoreTools' "Export Module to PDF" feature. This feature was manually triggered for each 

of the modules, giving us one PDF document for each module containing all sections, including 

mini-tasks. Then, we created a short python script that uses the PyPDF2 library to automatically 

extract all link URLs from each PDF document. The resulting list of extracted links, by module, 

is provided in the Supplement A spreadsheet under the MODULE_LINKS sheet. We then used 

the lynx program to automatically retrieve the textual contents, if any, present in the referenced 

resources. In some cases, the links referred to written documents with topically relevant text. In 

others, the links referred to resources like videos, or dead URLs. Therefore, it was necessary that 

we apply a post-processing step that we refer to as "prose extraction," which automatically 

identifies and extracts only the portions of the documents that are similar to English sentences 

(as opposed to tables, ads, boilerplate, etc.). Only the "prose" portions of the documents are used 

to train prompt-relational features. Some examples of the extracted prose are provided as a 

supplement to this report. 

7.2 Public resource extraction 

As our algorithms are statistical in nature and improve with the availability of larger amounts of 

textual data, we established a sub-goal in this phase of the project to develop a fully automated 

method for using LDC module data as a "seed" for conducting a more extensive data collection 

against public resources on the web.  

The procedure works as follows. First, we obtain the thematically-relevant module data 

from the LDC CoreTools system as described above. This gives us an initial picture of the 
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prompt domain and subject matter, and a means for determining the words and phrases that are 

most relevant to the prompt via a measure such as TD-IDF. This then gives us a list of key 

domain terms that can be used to conduct a web-based public data search, e.g., Bing or Google. 

For example, the term "water cycle" would be identified as a seed term for the Summer Scoring 

WATER module. A query of this term in Google would return a list of public documents 

relevant to those query terms. The response from Google is then analyzed, and the links returned 

are downloaded and used to further expand the set of documents we have available, creating an 

even more thorough dataset for the system to analyze. All of this translates to more accurate 

statistical measures of association between student responses and the prompt, which is the 

underlying technical goal of this task. 

7.3 Prompt-relational feature implementation 

The module data extraction and public resource extraction process described above produces a 

corpus of topically-relevant texts for each prompt. Obtaining these corpora has two main 

purposes, which we refer to as meaning representation and meaning relevance, each of which is 

associated with a type of implemented prompt-relational feature described below. 

7.3.1 Learning domain meaning representations 

The first reason for obtaining a topical corpus for each prompt is to learn adequately 

nuanced meaning-based representations of the vocabulary of words and phrases in the domain of 

the prompt. In many domains, there are words and phrases that do not occur in a general corpus 

of English. For example, it is entirely possible, even in a corpus of one million randomly 

sampled documents, that a phrase like "Red Scare" (a key phrase in one of the Summer Scoring 

prompts) may not occur at all or may occur only very rarely. Because the system relies upon the 

contextual analysis of many occurrences of words and phrases to understand their meanings, if a 

word or phrase only occurs a few times, an adequately nuanced understanding cannot be 

obtained.  

By supplementing the background corpus with topically-relevant documents obtained as 

above, the system is provided an opportunity to learn a meaning representation for these words. 

This then allows the system to better understand the words and phrases in the student responses, 

which of course will tend to be in the domain (for good responses at least). 



 

 19 

To implement the "meaning representation" prompt-relational features is actually rather 

straightforward. All that is required is that these corpora are added to the background corpus that 

is already used in the modeling process. No new code is actually required other than the software 

used to obtain the prompt-relevant supporting documents themselves, which we described in the 

previous subsections. 

7.3.2 Identifying domain meaning relevance 

The second reason for obtaining a topic corpus for each prompt is so that meaningful 

relationships between the response and the prompt can be measured. In the absence of prompt 

material providing context, the system has no idea whether the text the student has submitted is 

relevant to the prompt. In the prompt-specific training scenario, this was not required, since the 

response could be compared to other high-scoring responses in the training set to see if the 

subject matter was similar to those responses. However, in a prompt-blind setting, we have no 

assurance that some other high-scoring example in the training set is a response to the same 

prompt, since the training set contains responses from multiple prompts. 

To implement features that measure domain meaning relevance, we use a number of 

techniques, all of which are built around our core method for assessing meaning-based 

associations between two texts, which relies upon both weighted counting of words and phrases, 

as well as collapsed representations of sentences and larger portions of text. Specifically, for 

example, we start with a non-prompt-relational feature such as a count of the number of times a 

word occurs in the response. To make this a prompt-relational feature, we can weight it by the 

relative frequency of that word in the domain corpus, as compared to a general background 

corpus. Similar weightings can be done for other previously computed features that go beyond 

individual words and phrases, such as the features which aggregate entire sentences into a single 

vector-based representation. 

8 Transformations 

8.1 Pre-processing with lossless transformations 

Before presenting features to a learner, it is possible to pre-process the data with a lossless 

transformation. Such transformations include: 
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• Standardization, also known as z-scaling, in which the sample mean is subtracted from 

each item in a list of observations and the result is divided by the sample standard 

deviation. The resulting modified feature will have a sample mean of zero and a standard 

deviation of 1. 

• Normalization, where each value is divided by the maximum observed value. Optionally, 

prior to this division, the values may be centered through subtraction of the feature mean. 

• Percentile transformation, such that each observation in a list is replaced by its percentile 

rank. A transformation of ordered categorical data known as ridit scaling is a form of 

percentile transformation. 

The benefit of these normalizing transformations is that all features are placed on a 

common, unit-free, scale. By doing so, the transformed features can be directly compared and 

also combined, and it is readily apparent which values are extreme versus representative. 

In classical linear regression it is desirable to perform some form of normalization prior 

to parameter fitting, which not only yields scale-independent regression coefficients, but also 

reduces numerical instability in calculation of those coefficients. Modern learners, on the other 

hand, are typically impervious to changes in scale of the features — their numerical stability and 

learning ability is the same whether or not these transformations are performed. 

Since we expected little difference in behavior from using this approach with the high-

performing modern learners added to our system during Subtask 1.2, we declined to expend 

effort on experimenting with normalizing transformations. 

8.2 Dimensionality reduction of the feature set 

Principal component analysis (PCA) is a well-known technique for reducing the dimensionality 

of a data set. It is a statistical procedure that finds a set of linear combinations of the features that 

will maximally account for the variability in the data. These linear combinations, called principal 

components, are ordered so that each succeeding component has the highest variance possible 

under the constraint of being orthogonal to the preceding components. In a PCA one typically 

selects only the top principal components, enough to account for a large percentage of the 

variability, thereby achieving a reduction, often considerable, in the dimensionality of the feature 

set. Since the principal components take the place of the original feature set, such a data 

transformation is lossy. 
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We used the caret framework to test the efficacy of PCA for each of the selected learners. 

The caret package integrates a PCA option into its cross-validation capability. We requested that 

caret pre-process the training feature set to feed only the top principal components to the learner, 

with the default behavior of performing z-scaling of each feature prior to PCA, and selecting 

enough components to account for 95% of the variance. 

Unfortunately, our quantitative evaluation results indicated that the loss of information 

caused by PCA is more detrimental to the learning process than the transformation is beneficial. 

Instead of making the prediction problem easier for the learner, the approach generally degrades 

the learner's performance. This degradation was apparent for all of the high-performing 

model types, and no improvements were achieved using this strategy. 

However, one advantage was observed. The use of PCA causes a dramatic reduction in 

computation time, afforded by the elimination from consideration of features that carry little 

predictive content. This is true in particular for the random forest learners, which completed 

processing in minutes rather than hours. 

8.3 Predicting a categorical target 

Most learners are equipped to do both regression (to predict a numeric target) and classification 

(to predict a categorical target). Thus far in this project we have used each learner in regression 

mode, presenting the score to be predicted as a numeric target; the predictive model thus learned 

will return a floating point prediction. An alternative to regression is classification, where each 

possible target value is a separate category to be learned; for each observation (essay) the 

predictive model will return a score from among the set of possible categories. 

Again we conducted our modeling study in caret using the top performing learners. In the 

caret framework it is a simple matter to request a learner to perform classification instead of 

regression: we simply change the type of the target from numeric to categorical. (This is 

achieved by requesting in R that the target be interpreted as a factor object.) One subtlety of the 

target distribution led to frequent model failure: certain target values are recorded as the average 

of two or more scores. Passing these to the learner as valid categories to be predicted would lead 

to complaints about the infrequency of those categories, and a failure of the algorithm. The 

solution is to round the target values to those allowed by the scoring rubric before proceeding 

with learning. In doing so there is a loss of target information compared to the regression 
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situation. On the other hand, this rounding guarantees that only valid scores will be learned--the 

predicted score returned in classification will always be admissible, whereas in the regression use 

case the output is a floating point prediction which must be rounded to the nearest conforming 

value. 

As with our evaluation of the dimensionality reduction strategy, our quantitative 

evaluation results for this strategy also indicated that the loss of information is more detrimental 

to the learning process than beneficial. Again, this degradation was apparent for all of the 

high-performing model types, and no improvements were achieved using this approach. 

For predicting a target such as essay score, it seems the classification approach is 

disadvantaged by the loss of information in converting a numeric outcome to a category: the 

classifier cannot take advantage of the natural ordering embodied within a numeric score, and 

thus we can expect some loss of predictive accuracy compared to regression. (With some 

learners it is possible to take advantage of this ordering, by declaring the type of the target to be 

an ordered factor.) 

8.4 Predicting a binary threshold target 

Another approach to prediction of a numeric target is to combine the predictions of a family of 

sub-models, each sub-model predicting a different binary threshold target. For example, for a 

score taking integer values from 1 to 4 one can define four sub-models: the first predicts the 

probability that the score is greater than or equal to 1, the second predicts P(Score ≥ 2), the third 

P(Score ≥ 3), and the fourth P(Score ≥ 4). (Since the first of these models will yield identically 

1, there are only three binary targets to learn.) These four model outputs can be combined into a 

prediction by using the well-known formula for the expectation of a non-negative random 

variable in terms of the tail probabilities of the random variable: 

 

 𝐸 𝑋 = 𝑃 𝑋 ≥ 𝑡 𝑑𝑡(
)         (1) 

 

In the above example of integer-valued scores from 1 to 4, this formula simplifies to 

 

 𝐸 𝑆𝑐𝑜𝑟𝑒 = 	1 + 	𝑃 𝑆𝑐𝑜𝑟𝑒 ≥ 2 + 	𝑃 𝑆𝑐𝑜𝑟𝑒 ≥ 3 + 	𝑃(𝑆𝑐𝑜𝑟𝑒 ≥ 4)  (2) 
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and in general for predicting a discrete numeric target such as an essay score it is enough 

to build binary predictors that capture every possible score threshold, and analytically combine 

the observed predictions using (1). 

We employed the caret cross-validation framework to study this approach. For each 

learner we requested a number of binary classification models to be built, with the output being 

the probability of the 'positive' class. The predicted probabilities obtained from cross-validation 

are then combined (outside of caret) using an analytic calculation similar to (2). 

It was with this approach that we were finally able to achieve a positive performance 

outcome. For both the xgbTree and xgbLinear model types, the strategy induced a 

consistent improvement in scores, most notably for the xgbLinear model type. For 

xgbLinear, using the binary threshold strategy caused a mean 7.9% improvement across 

all five traits. For xbgTree, the improvement was a modest but positive mean of 1.3%. 

There are a number of possible reasons the 'integration of binary thresholds' approach did 

not work for the other model types. At the lowest score thresholds, the preponderance of target 

values for these binary models are positive examples, while as the threshold increases, the 

negative examples will dominate. In other words, at both ends of the score distribution the ratio 

between positive and negative examples is skewed. This leads to instability in learning the binary 

target. If training is not conducted with care, the resulting model (if it converges at all) may 

suffer from overfitting, or may learn a trivial result (always returning the majority class). Here 

too, the natural ordering between scores is lost in the transition to binary threshold models. There 

is no enforcement of the requirement that the higher the score, the less likely the score; 

consequently, it is possible to observe non-monotonic behavior in the predicted probabilities as 

the score threshold increases. 

8.5 Discussion 

Despite the relatively underwhelming overall performance of these approaches, there were 

isolated but clear improvements that can be used help to make the system more accurate for 

some traits. Also, the by-products of these approaches can play a more general role in the 

modeling enterprise — as augmentations to the feature set. We can adjoin the top principal 

components to the feature list instead of replacing them entirely. Or we can build binary 

threshold models as a preliminary task and regard the predicted probabilities calculated by these 
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models as a new class of features. Indeed, the model outputs from all of the approaches studied 

here can serve as additional higher-level features; this is the approach that we took in the original 

incarnation of the essay scoring engine. It is also an approach that we will explore later in the 

project as time permits. 

9 Quantitative Evaluation 
This section presents the results of two system evaluations: (1) a baseline evaluation to determine 

the scoring accuracy of the original version of ATSE in relation to LDC datasets and the LDC 

prompt-blind scoring use case, and (2) an interim evaluation conducted at the completion of 

Subtasks 1.1 and 1.2 to determine how much the system's accuracy has improved as a result of 

introducing the feature extraction and modeling approaches described above. We present these 

two evaluations in the subsections below, but begin first with a description of the evaluation 

methodology. 

9.1 Evaluation method 

For the LDC use case, our principal goal in evaluating ATSE is to measure how accurately it can 

score responses to previously unseen LDC prompts. This is the definition of the "prompt-blind" 

use case. 

Prompt-folded cross-validation and generalization 

ATSE is a supervised machine learning system. The scoring models that ATSE learns are built 

by observing a training dataset of manually scored texts. Because of this, it is inappropriate to 

evaluate ATSE's performance using examples from the training set. Doing so can be viewed as a 

form of "cheating," such that it prevents a true measurement of the primary aspect of the system's 

accuracy that we are trying to evaluate — it's ability generalize to new (unseen) data. Without 

measuring generalization, there is a significant risk of producing a model that performs well on 

the training data, but which performs poorly on other datasets, otherwise known as overfitting. 

A more appropriate and commonly used method of model validation used in machine 

learning is called "k-fold cross-validation."2 In k-fold cross-validation, the training dataset it split 

                                                
2 https://en.wikipedia.org/wiki/Cross-validation_(statistics)#k-fold_cross-validation 
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(usually randomly) into multiple partitions or "folds." Then, the system is trained using all but 

one of these folds (called the "holdout" fold), and then evaluated based upon its prediction 

performance on the holdout. This process is repeated for each fold, and the mean of the multiple 

results is then reported.  

In the LDC use case, however, it would be inappropriate to perform a naive random k-

fold cross-validation experiment. This is because a randomized partitioning would result in 

responses from any given prompt appearing in both the training and validation set. 

Instead, it is necessary that we force the fold partitions to correspond to a partitioning of 

the training data by prompt. We will refer to this as "prompt-folded cross-validation." In the case 

of the Summer Scoring dataset specifically, we have 7 prompts. This results in each round of 

validation having a training set composed of responses to 6 prompts, and a validation set 

composed only of a holdout 7th prompt. We then conduct 7 rounds of validation and tabulate 

those results.  

We note that this type of evaluation, given our training set of 7 prompts, actually 

produces an estimate of prompt-blind scoring accuracy that is based upon a 6-prompt training 

set. Training the system on all 7 training set prompts would likely result in greater accuracy, but 

we do not have the means of empirically assessing that accuracy until another new hand-scored 

prompt dataset is available. 

We also note that there is an additional risk of overfitting, i.e., a lack of generalization, 

even if cross validation is used to select models with what appears to be good generalization. 

This risk comes from the customization process as a whole. If the actions we take to improve the 

ATSE framework, such as feature development and modeling structure configuration, are driven 

by our observation of the cross-validation error, then the customization process itself is lacking a 

cross-check against a higher level of overfitting. To address this concern, the ideal scenario 

would be to select one or two prompts and reserve them as a long-term customization process 

holdout. Our customization process would then proceed, using the non-held-out training data and 

cross-validation procedures to guide us, and only at the end of each major round of 

customization (e.g., every couple of months) would we evaluate how the system performs on the 

long-term holdout. This is the ideal simulation of the true LDC use case and will give us the best 

overall estimate of accuracy and generalization. However, use of this additional procedural check 
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for generalization can only really be effective once we have more than 7 prompts. We therefore 

postpone use of this approach until the next round of hand-scored data becomes available. 

9.2 Baseline evaluation 

The goal of the baseline evaluation is to determine the scoring accuracy of the original version of 

ATSE for LDC datasets and the LDC prompt-blind scoring use case, so that a relative 

assessment can be made of our future ATSE improvements. To do this, we perform the prompt-

folded cross-validation experiment described above, using an unmodified version of ATSE. 

The results of the baseline experiment are documented in detail in the matrices in the 

sheet named BASELINE in the Supplement A spreadsheet. The top-most matrix in that sheet 

shows the inter-rater reliability by prompt and by trait. The mean inter-rater agreement, 

expressed as quadratic-weighted kappa ("qkappa" henceforth), across all traits and 

prompts is 62.8%. This number expresses a summary of our target accuracy for the system. 

The next four matrices in the sheet present both the prompt-blind and prompt-specific 

results of the baseline ATSE system as qkappa by prompt and by trait. Two of these matrices 

show the results as absolute values, while the other two show results as relative to inter-rater 

reliability. Measuring accuracy as relative to human agreement allows us to conveniently 

consider 100% as our target accuracy.  

We note that previously reported prompt-specific results are slightly different than the 

current results (see the grey cells). The reason for this is the inherent non-determinism in the 

experiment, where each time a training run is executed, a slightly different model is produced. 

To summarize the results of the baseline experiment: the system achieves a mean 

baseline human-relative qkappa performance of 51.3%. This is our starting point for the 

project, with our goal being to increase this to 100%, so that the system is effectively 

producing scores in a manner that is as accurate as human scorers. 

9.3 Interim comparative evaluation 

The goal of the interim evaluation is to determine how much the system's accuracy has improved 

as a result of introducing the modeling approaches and prompt-blind features developed since the 

beginning of the project. We describe the results in three stages. In the first stage, we present an 

exploratory study of caret model types. In the second stage, we present improvements that result 
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from the application of a chosen set of these new caret-based modeling approaches (introduced 

above in Section 6.2). In the third stage, we describe the additional improvements that arise from 

the inclusion of new prompt-relative features (introduced above in Section 7.3). 

Caret model exploration 

One of the key approaches that was planned for Subtask 1.1 was to explore the addition of 

promising model types to the ATSE modeling ensemble. Initially, the task was begun by 

studying xgboost, but we subsequently discovered the caret package, which allowed us to rapidly 

accelerate the number of model types that we could explore (including xgboost). Caret is an R 

package that provides a common interface to many model types, importantly including built-in 

routines for hyper-parameter tuning by cross-validation.3 

As a first step to using the caret package, we extracted a small subset of available ATSE 

features from the LDC prompt-blind experiment, selected only one trait for scoring, and 

manually studied how well every available caret model performed. We selected a small number 

of features instead of using all of them because we expected that many of the caret model types 

would not scale well to our very large set of features. Instead, our goal in this first step was 

primarily to weed out those caret models that are clearly low performers and not adaptable to our 

use case. 

The results of our exploratory caret model study are documented in detail in the 

Supplement A spreadsheet on the sheet named CARET_MANUAL. In the sheet, we have listed 

the 134 caret-accessible models that are available for performing regression. Additionally, we 

have noted, when the model was successful, the attained qkappa value and amount of time 

required for processing in seconds. Also, we have attached comments and a record of errors for 

later study and debugging. Many of the models produced errors during training. Many others 

were manually skipped because errors were anticipated (such as when it has already been 

discovered that a model's supporting package will fail). Still others were run, but then 

                                                
3 We refer the reader to a paper by Fernandez-Delgado, et al., called "Do we Need Hundreds of 
Classifiers to Solve Real World Classification Problems?" in Journal of Machine Learning 
Research 15 (2014) 3133-3181. The paper presents an extremely thorough study of many model 
types across many datasets for the problem of classification (as opposed to regression). Many of 
the best performing models are those provided by the caret package. 
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prematurely manually terminated because the processing time was determined to be excessive. 

Table 3 shows the frequency of different outcomes achieved for the 134 models studied. 

Table 4.  Counts of the various outcomes in our exploration of available caret regression model types 

Result Description Count 

bad The model finished training, but the results were essentially random. 6 

crash The model crashed the entire R system while training. 1 

error An error occurred while training and no results were produced. 25 

good A reasonable result was achieved. 39 

hang The model caused the R system to become unresponsive. 4 

long The model took too long to train and was manually terminated 13 

skipped The model was skipped because an error was anticipated. 46 

 

As the table suggests, 39 models completed training with a positive outcome. There were an 

additional 6 models that completed, but which produced essentially random outcomes. (We note 

in the spreadsheet that we would like to continue to assess these 6 models in the future, as it has 

been reported that they often work well.) The 39 successfully trained models were chosen for use 

in the next phase of our experiment.  

Addition of good caret models, with original features 

In the next phase of our experiment we applied the 39 successfully trained caret model types to 

the full set of original ATSE features and all 5 traits in the LDC rubric. The results are 

documented in detail in the two matrices at the top of the sheet named CARET_MODELS in the 

Supplement A spreadsheet. This matrix shows the prompt-folded mean qkappa validation result 

for all 39 model types. The models are ranked by their mean qkappa across all five prompts, with 

the best performers at the bottom (blue indicates better and red indicates worse). The matrix to 

the left shows the raw qkappa scores, while the matrix on the right expresses the scores as 

relative to the results achieved in the baseline experiment described above in Section 9.2. 

Four of the models achieved at least a 20% improvement over our baseline 

experiment, while 15 models achieved at least a 10% improvement. By selecting the best 
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performing model for each trait (see the row labeled "MAX"), the mean improvement over 

the baseline model can be raised to 37.3% (see the highlighted yellow cell). 

Addition of prompt-relative features 

In the final phase of our experiment, we added our new prompt-relative features, described in 

Section 7.3, to the existing basic ATSE features and measured the improvements. The results are 

documented in detail in the three matrices at the bottom of the sheet named CARET_MODELS 

in the Supplement A spreadsheet. The matrices show the prompt-folded mean qkappa validation 

result for a selected 6 model types, chosen based upon their good performance in the previous 

stage of the evaluation, as well as their ability to do training in a reasonable amount of time. 

There are some caret models, particularly the random forest based models (e.g., rf, 

Rborist, and parRF), that have been documented as being highly accurate models. However, due 

to time constraints on completing the experiment, and poor compute speed for these algorithms, 

final results were not obtained in time for this report. In the future, when time for training is less 

limited, we plan for these models to be added to the ensemble. 

Four of the six selected good models achieved at least a 10% improvement over the 

results of the caret experiment with only original features. By selecting the best performing 

model for each trait (see the row labeled "MAX"), the mean improvement over the selected 

best models for the original feature experiment was 5.1% (see the highlighted yellow cell). 

Summary 

Our additions to the model types and feature extractors used in ATSE has resulted in an 

approximately 44.3% improvement over the original ATSE system as it was at the 

beginning of the project. This equates to a 70.6% performance relative to human inter-

annotator agreement. While we have achieved a substantial improvement over the baseline 

approach (51.3% relative to human agreement), the need for further improvement remains 

before the system can be assessed as statistically similar to human grading. 
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10 ATSE REST / Microservice API 
While not part of the current project, we would like to report on an important development at 

SRI with respect to the ATSE framework. 

SRI's Education Division are world-class experts in the area of educational assessment 

and conduct a significant volume of assessment research each year. This research often includes 

the deployment of assessments in schools, which can be costly without the right infrastructure. 

Our Education Division recently identified the problem of reducing the effort and cost of 

deploying assessments as a key challenge and allocated some internal research and development 

funding to pursue development of a SRI-accessible instantiation of the open-source Tao 

assessment platform for the purpose of facilitating SRI's assessment research. 

As part of this internal SRI-funded project, the ATSE team was asked to develop an 

interface for ATSE that would allow it to be conveniently linked with the Tao platform, to allow 

for the Tao platform to include automated assessment of the SRI-developed ECS "Exploring 

Computer Science" assessments (which we have been developing ATSE scoring models for).4 

This development project was very recently started in October and is being performed by a 

dedicated full-time software engineer. It is expected that the task will be complete by the end of 

2016. 

What this means for LDC is that we expect to have an easily accessible solution for 

deploying the ATSE software to the LDCs CoreTools environment much sooner than originally 

anticipated. ATSE will have a convenient, well-documented, Web-accessible REST interface, 

which could potentially be integrated into LDC's solution without any further effort on SRI's part 

other than documentation and support. We think this is an exciting development and hope LDC 

are pleased to know that we are a significant step closer to the final objective of full integration 

of ATSE into the LDC platform, even though this was not part of our current LDC-funded 

project. 

                                                
4 https://csforallteachers.org/blog/release-of-the-ecs-assessments-cumulative-units-1-4-
assessments-available-now 
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11 Progress summary archive 
This section archives “Progress summary” sections from previously delivered progress reports, 

for the purposes of reviewing project progress over time. 

11.1 Progress summary from Interim Report #1 

We begin with a short summary of our progress with respect to these targets to-date, reserving a 

detailed description for the sections below. 

Our first major accomplishment in the project has been the completion of a baseline 

ATSE evaluation using a preliminary LDC dataset (henceforth, the "Summer Scoring" dataset). 

This has set an important foundation for our work, giving us the necessary baseline 

measurements to comparatively evaluate our progress in improving scoring accuracy going 

forward, and getting us familiarized with using and analyzing LDC-collected datasets and 

responses to LDC prompts. After completing the evaluation, we provided documentation of the 

results to for use in a Department of Education proposal, submitting a rough report in August 

2016. An extended version of that report on the Summer Scoring dataset is provided in Section 0 

of this document, while a description of the baseline evaluation is described in Section 9. 

Our second major accomplishment has been the design and development of a novel 

machine learning workflow framework. The framework addresses one of the key challenges 

associated with our goal to introduce new models into the ATSE system. Recognizing that the 

optimization of ATSE's modeling components for the LDC use case is likely to be an ongoing 

task not isolated to the first months of this project, and given delays in obtaining high quality 

training data, we decided to invest effort early on to maximize later benefit. We decided to re-

architect the ATSE modeling engine to enable a more flexible method for formulating and 

training models. Our new workflow engine automates much of the human effort underlying the 

model customization process. Additionally, we have come upon, and have subsequently 

integrated into ATSE the "caret" package, which is an R-based API for conveniently training 

hundreds of different model types, including our targeted "xgboost" library. This modeling 

improvement work is described in detail in Section 6 below. 

Finally, with respect to our other main interim goal of prompt-blind feature development, 

our progress has unfortunately not kept up with originally planned pacing. While we have 

managed to instantiate the mechanisms for extracting relevant background reading materials 
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manually, and we have implemented a new automated method for automatically retrieving 

publicly-available related materials via Web search queries, we have not yet completed what we 

feel to be a comprehensive set of prompt-relational features. We therefore suggest that execution 

of this task be extended for another month in order to achieve the goals we set for it. 

Documentation of what we have achieved thus far on this task is provided in Section 7. 

Despite our effort being partially delayed, we think it is important to proceed with 

documenting our progress to-date. The current report is therefore missing one important element 

that was originally planned for inclusion — results of a comparative quantitative evaluation 

showing how our developments have improved scoring accuracy. These experiments are 

underway, but more time is needed to finish them, analyze their results, and document them. Our 

new plan is to complete these experiments and produce an updated version of this document by 

November 18th. In the meantime, we hope to receive LDC's comments, questions, or requests 

for further detail on what is present in the report, the responses to which we can also include in 

the subsequent version. 

11.2 Progress summary from Interim Report #2 

Our goal in Subtask 1.3 was to complete an investigation into multiple strategies for extracting 

maximum predictive performance from ATSE, specifically focusing on strategies that were 

complementary to implementation of new features or machine learning algorithms (since these 

approaches were reserved for other tasks). Instead, this task would focus on the isolated 

challenge of manipulating feature data that was already being generated, in a way that would 

benefit the learners already in our toolbox. 

The completion of Subtasks 1.1 and 1.2 and the integration of the caret framework gave 

us new information about the nature and performance characteristics of several component 

model types, and one of the first determinations we made for Subtask 1.3 was that some of the 

strategies we originally proposed were unlikely to improve performance when using these new 

model types. This is because many of the best performing model types already have inherent 

capabilities that encapsulate our proposed transformations. Also, given the large gains achieved 

with Subtask 1.2, our expectations for the amount of performance gain that would be achieved 

were diminished, since those improvements would likely overshadow improvements obtained 

via transformations that do not explicitly add information to the data. 
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Adjusting our approach, we decided to focus instead on strategies that were hypothesized 

to be complementary to the high-performing modeling types introduced in Subtask 1.2. We 

decided to focus on three main themes: (1) pre-processing of the feature set with lossless 

transformations, (2) dimensionality reduction of the feature set, and (3) alternative targets for 

prediction. 

Each of these three avenues of research is discussed in a separate section below. In each 

case we carried out a quantitative evaluation similar to the one described in Section 6.3 our 

previous Interim Report #1, selecting the top performing learning algorithms identified in that 

report (i.e., glmnet, Rborist, xgbTree, parRF, xgbLinear, rf, gcvEarth, earth, svmLinear3, and 

gbm), applying our selected transformation, and then comparing the performance result to that 

obtained without using the transformation. 

In summary, the performance improvements we obtained in Subtask 1.3 with our 

transformation approaches were not as high as originally anticipated. Only one of our strategies 

(predicting a binary threshold target, see Section 8.4 below) was able to consistently improve the 

outcome for any particular high-performing model type. One key highlight was that this 

strategy garnered a mean 8% improvement for the xgbLinear model across all five scoring 

traits. However, because xgbLinear is not our best performing model type, our 

improvement over the best model type for each trait averaged only 1.7%, with 3.9% 

achieved for the "Conventions" trait and 4.1% for "Organization." Improvement on the 

other traits was, unfortunately, insignificant. This result does not meet our 5-10% 

improvement objective and suggests that more headway can be made by shifting focus back to 

feature development — the subject of the next task in our project schedule, Subtask 1.4. 

In the following sections, we present the technical details of the transformation strategies 

we explored in Subtask 1.3. 

 


